Tag Archives: filesystem

Setting Shared Folder Compression on Synology NAS (BTRFS)

disk-managementIf you have a Synology NAS that supports BTRFS (mostly the intel based NASes) and that you decided to use BTRFS, there are a couple of shared folders automatically created for you (like the “homes” or “video”) but they don’t have the “compression” option set, and trying to edit the shared folder in the administration GUI does not help, the check box is grayed out, meaning it is not possible.

BTRFS compression is quite “clever”. It has some heuristics that evaluate if a file is worth being compressed or not so it won’t try to compress the 1GB video of your toddlers playing together which is a waste of time given that the compression achieved might not be visible. But anyway, even if BTRFS is “clever” it does not mean that if you have a folder named video that you should consider using compression. Simply just don’t do it.

For folders with mixed data like “homes” (which is the shared folder for all user home directory) you might have wished Synology would have activated the compression. Or if you forgot to tick the check box once creating the volume, you might want to change it. But there is a way to change that. It is not guaranteed that it won’t break your NAS, especially if you do execute the wrong command, but if you don’t mind the risk then follow on.

BTRFS allows you to change the option on a live system without troubles. However, existing data on the shared folder won’t be compressed after activating the option, you would need to copy again the existing data to take benefits for it or defragment it using the compression option (-c see man btrfs-filesystem), however depending on your amount of data this might take a while.

To do it, you will need to activate SSH remote connection (try to limit it to your local LAN and do not open it to the internet unless you know what you are doing). You will need to connect via SSH using the administrator account (admin by default, but you would be wise to change the default name). I trust you know how to activate SSH on your NAS box, if not I would recommend you don’t try to do the rest of this article, ask someone who might know it! From a Linux or macOS (OS X) system, just open a terminal and type:

$ ssh <admin>@<hostname>

(and replace admin by the correct user account and hostname by your NAS hostname or IP address)

On Windows, you could use putty and achieve a similar fate.

Once connected, you need to know your BTRFS volume path:

$ mount -t btrfs
/dev/mapper/vg1-volume_1 on /volume1 [...]

In the above example, it is /volume1. Now you should have a BTRFS subvolume (think of it as a BTRFS internal sub partition which Synology uses to define shared folders) called “homes” (or whatever other shared folder you would like to tweak):

$ sudo btrfs subvolume list /volume1
[...]
ID 259 gen 1688 top level 257 path homes
[...]
ID 264 gen 1686 top level 257 path video

So here we have made sure that the “homes” shared folder is located on /volume1/homes. Now let us check its properties:

$ sudo btrfs property get /volume1/homes
ro=false

Here we can confirm that compression is not set (note that compression was not set as a mount option, nor at the volume root). To activate is, you need to create the “compression” property, you can choose either zlib or lzo. The former compress better but is slower, the latter is fast but as much lower compression ratio. I personnaly choose lzo:

$ sudo btrfs property set /volume1/homes compression lzo

You can use again the previous command to get the properties for the volume and see if it was set. Now you can copy your files to the shared folder, and BTRFS will try to compress them if it thinks it makes sense.

Picture credits: Picture is from the KDE project. The original materials is licensed under GNU LGPLv3.

How to verify your Synology NAS hard disks

I upgraded my 2 HDD in my Synology NAS to bigger ones. The change and rebuild of the RAID mirror was seemless. But I wanted to verify the health of the filesystems before growing the volumes. Here is how to do it.

Note: I am making the following assumptions, you know what you are doing, you activated SSH on your box and know how to connect as root, you know and understand how your NAS HDD have been configured, you have a wokring backup of your HDD data, you are not afraid of losing your data.

First find out what is the drive name of your volume(s) and also what is the filesystem type:

# mount
/dev/root on / type ext4 (rw,relatime,barrier=0,journal_checksum,data=ordered)
(...)
/dev/mapper/vol1-origin on /volume1 type ext4 (usrjquota=aquota.user,grpjquota=aquota.group,jqfmt=vfsv0,synoacl)
/dev/mapper/vol2-origin on /volume2 type ext4 (usrjquota=aquota.user,grpjquota=aquota.group,jqfmt=vfsv0,synoacl)

In my case, I have created 2 volumes on top of my mirror. The device on which these volumes are stored are /dev/mapper/vol1-origin and vol2-origin, they are both ext4 filesystems. But you probably do not have such a setup and only have one volume on top of your RAID array and your device might simply be /dev/md[x].

The fact that my devices were in /dev/mapper hinted me that they might be a LVM layer somewhere. So I executed the following command (harmless):

# lvs
LV                    VG   Attr   LSize    Origin Snap%  Move Log Copy%  Convert
syno_vg_reserved_area vg1  -wi-a-   12.00M
volume_1              vg1  -wi-ao    1.00T
volume_2              vg1  -wi-ao    1.00T

So my 2 volumes are LVM logical volumes. Now that I have this information, I can do the following to verify the filesystems’ health. First of all, shutting down most services and unmounting the filesystems:

# syno_poweroff_task

Now if you did not have LVM but rather a /dev/md[x] device, you can simply do (if you have an ext2/ext3/ext4 filesystem only, and replace the ‘x’ by the correct number):

# e2fsck -pvf /dev/mdx

But if like me you have LVM, then you will need a few extra steps. The ‘syno_power_off’ has probably deactivated the LVM logical volumes, to be sure check the “LV Status” given by the next command (harmless, not the complete output is here given):

# lvdisplay
--- Logical volume ---
LV Name                /dev/vg1/volume_1
VG Name                vg1
LV UUID                <UUID>
LV Write Access        read/write
LV Status              NOT available
LV Size                1.00 TB

As you can see the logical volume is not available. We need to make it available so that the link to the logical volume is accessible:

# lvm lvchange -ay vg1/volume_1
# lvdisplay
--- Logical volume ---
LV Name                /dev/vg1/volume_1
VG Name                vg1
LV UUID                <UUID>
LV Write Access        read/write
LV Status              available
# open                 0
LV Size                1.00 TB

The status has changed now to “available”, so we can proceed with the filesystem verification:

# e2fsck -pvf /dev/vg1/volume_1

To finish this, you need to remount and restart all the stopped services. I do not know a specific Synology command to do that, so I simply rebooted the machine:

# shutdown -r now